Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.17.516888

ABSTRACT

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4 and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariants BA.2.75.2 and BQ.1.1 are expected to become predominant in many countries in November 2022. They carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lost any antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remained weakly active. BQ.1.1 was also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals were low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increased these titers, which remained about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increased more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitated their spread in immunized populations and raises concerns about the efficacy of most currently available mAbs.


Subject(s)
Breakthrough Pain
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.22.22277885

ABSTRACT

Since early 2022, Omicron BA.1 has been eclipsed by BA.2, which was in turn outcompeted by BA.5, that displays enhanced antibody escape properties. Here, we evaluated the duration of the neutralizing antibody (Nab) response, up to 16 months after Pfizer BNT162b2 vaccination, in individuals with or without BA.1/BA.2 breakthrough infection. We measured neutralization of the ancestral D614G lineage, Delta and Omicron BA.1, BA.2, BA.5 variants in 291 sera and 35 nasal swabs from 27 individuals. Upon vaccination, serum Nab titers were reduced by 10, 15 and 25 fold for BA.1, BA.2 and BA.5, respectively, compared with D614G. The duration of neutralization was markedly shortened, from an estimated period of 11.5 months post-boost with D614G to 5.5 months with BA.5. After breakthrough, we observed a sharp increase of Nabs against Omicron subvariants, followed by a plateau and a slow decline after 4 or 5 months. In nasal swabs, infection, but not vaccination, triggered a strong IgA response and a detectable Omicron neutralizing activity. Thus, BA.5 spread is partly due to abbreviated vaccine efficacy, particularly in individuals who were not infected with previous Omicron variants.


Subject(s)
Breakthrough Pain
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.14.472630

ABSTRACT

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa 1,2 . It has in the meantime spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of about 32 mutations in the Spike, located mostly in the N-terminal domain (NTD) and the receptor binding domain (RBD), which may enhance viral fitness and allow antibody evasion. Here, we isolated an infectious Omicron virus in Belgium, from a traveller returning from Egypt. We examined its sensitivity to 9 monoclonal antibodies (mAbs) clinically approved or in development 3 , and to antibodies present in 90 sera from COVID-19 vaccine recipients or convalescent individuals. Omicron was totally or partially resistant to neutralization by all mAbs tested. Sera from Pfizer or AstraZeneca vaccine recipients, sampled 5 months after complete vaccination, barely inhibited Omicron. Sera from COVID-19 convalescent patients collected 6 or 12 months post symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titers 5 to 31 fold lower against Omicron than against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and to a large extent vaccine-elicited antibodies.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.26.445838

ABSTRACT

The SARS-CoV-2 B.1.617 lineage emerged in October 2020 in India. It has since then become dominant in some indian regions and further spread to many countries. The lineage includes three main subtypes (B1.617.1, B.1617.2 and B.1.617.3), which harbour diverse Spike mutations in the N-terminal domain (NTD) and the receptor binding domain (RBD) which may increase their immune evasion potential. B.1.617.2 is believed to spread faster than the other versions. Here, we isolated infectious B.1.617.2 from a traveller returning from India. We examined its sensitivity to monoclonal antibodies (mAbs) and to antibodies present in sera from COVID-19 convalescent individuals or vaccine recipients, in comparison to other viral lineages. B.1.617.2 was resistant to neutralization by some anti-NTD and anti-RBD mAbs, including Bamlanivimab, which were impaired in binding to the B.1.617.2 Spike. Sera from convalescent patients collected up to 12 months post symptoms and from Pfizer Comirnaty vaccine recipients were 3 to 6 fold less potent against B.1.617.2, relative to B.1.1.7. Sera from individuals having received one dose of AstraZeneca Vaxzevria barely inhibited B.1.617.2. Thus, B.1.617.2 spread is associated with an escape to antibodies targeting non-RBD and RBD Spike epitopes.


Subject(s)
Poult Enteritis Mortality Syndrome , COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.20.21257393

ABSTRACT

The mechanisms that allowed for the SARS-CoV-2 B.1.1.7 variant to rapidly outcompete pre-existing variants in many countries remain poorly characterized. Here, we analyzed viral release, anti-SARS-CoV-2 antibodies and cytokine production in a retrospective series of 427 RTqPCR+ nasopharyngeal swabs collected in COVID-19 patients harbouring either non-B.1.1.7 or B.1.17 variants. We utilized a novel rapid assay, based on S-Fuse-T reporter cells, to quantify infectious SARS-CoV-2. With both non-B.1.1.7 and B.1.1.7 variants, viral titers were highly variable, ranging from 0 to >106 infectious units, and correlated with viral RNA levels. Lateral flow antigenic rapid diagnostic tests (RDTs) were positive in 96% of the samples harbouring infectious virus. About 67 % of individuals carried detectable infectious virus within the first two days after onset of symptoms. This proportion decreased overtime, and viable virus was detected up to 14 days. Samples containing anti-SARS-CoV-2 IgG or IgA did not generally harbour infectious virus. The proportion of individuals displaying viable virus or being RDT-positive was not higher with B.1.1.7 than with non- B.1.1.7 variants. Ct values were slightly but not significantly lower with B.1.1.7. The variant was characterized by a fast decrease of infectivity overtime and a marked release of 17 cytokines (including IFN-b, IP-10, IL-10 and TRAIL). Our results highlight differences between non-B.1.1.7 and B.1.1.7 variants. B.1.1.7 is associated with modified viral decays and cytokine profiles at the nasopharyngeal mucosae during symptomatic infection.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL